Quantum statistics of a single-atom Scovil-Schulz-DuBois heat engine

Sheng Wen Li, Moochan B. Kim, Girish S. Agarwal, Marlan O. Scully

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)

Abstract

We study the statistics of the lasing output from a single-atom quantum heat engine, which was originally proposed by Scovil and Schulz-DuBois [H. E. D. Scovil and E. O. Schulz-DuBois, Phys. Rev. Lett. 2, 262 (1959)PRLTAO0031-900710.1103/PhysRevLett.2.262]. In this heat engine model, a single three-level atom is coupled with an optical cavity and is in contact with a hot and a cold heat bath together. We derive a fully quantum laser equation for this heat engine model and obtain the photon number distribution both below and above the lasing threshold. With the increase of the hot bath temperature, the population is inverted and lasing light comes out. However, we notice that if the hot bath temperature keeps increasing, the atomic decay rate is also enhanced, which weakens the lasing gain. As a result, another critical point appears at a very high temperature of the hot bath, after which the output light become thermal radiation again. To avoid this double-threshold behavior, we introduce a four-level heat engine model, where the atomic decay rate does not depend on the hot bath temperature. In this case, the lasing threshold is much easier to achieve and the double-threshold behavior disappears.

Original languageEnglish
Article number063806
JournalPhysical Review A
Volume96
Issue number6
DOIs
Publication statusPublished - 5 Dec 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'Quantum statistics of a single-atom Scovil-Schulz-DuBois heat engine'. Together they form a unique fingerprint.

Cite this