Provenance of classical Hamiltonian time crystals

Anton Alekseev, Jin Dai, Antti J. Niemi*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Classical Hamiltonian systems with conserved charges and those with constraints often describe dynamics on a pre-symplectic manifold. Here we show that a pre-symplectic manifold is also the proper stage to describe autonomous energy conserving Hamiltonian time crystals. We explain how the occurrence of a time crystal relates to the wider concept of spontaneously broken symmetries; in the case of a time crystal, the symmetry breaking takes place in a dynamical context. We then analyze in detail two examples of timecrystalline Hamiltonian dynamics. The first example is a piecewise linear closed string, with dynamics determined by a Lie-Poisson bracket and Hamiltonian that relates to membrane stability. We explain how the Lie-Poisson brackets descents to a time-crystalline pre-symplectic bracket, and we show that the Hamiltonian dynamics supports two phases; in one phase we have a time crystal and in the other phase time crystals are absent. The second example is a discrete one dimensional model of a Hamiltonian chain. It is obtained by a reduction from the Q-ball Lagrangian that describes time dependent nontopological solitons. We show that a time crystal appears as a minimum energy domain wall configuration, along the chain.

Original languageEnglish
Article number35
JournalJournal of High Energy Physics
Volume2020
Issue number8
DOIs
Publication statusPublished - 1 Aug 2020
Externally publishedYes

Keywords

  • Differential and Algebraic Geometry
  • Field Theories in Lower Dimensions

Fingerprint

Dive into the research topics of 'Provenance of classical Hamiltonian time crystals'. Together they form a unique fingerprint.

Cite this