TY - GEN
T1 - Predicting Real-World Penny Auction Durations by Integrating Game Theory and Machine Learning
AU - Wang, Yujia
AU - Yu, Haoran
N1 - Publisher Copyright:
Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2024/3/25
Y1 - 2024/3/25
N2 - Game theory and machine learning are two widely used techniques for predicting the outcomes of strategic interactions among humans. However, the game theory-based approach often relies on strong rationality and informational assumptions, while the machine learning-based approach typically requires the testing data to come from the same distribution as the training data. Our work studies how to integrate the two techniques to address these weaknesses. We focus on the interactions among real bidders in penny auctions, and develop a three-stage framework to predict the distributions of auction durations, which indicate the numbers of bids and auctioneer revenues. Specifically, we first leverage a pre-trained neural network to encode the descriptions of products in auctions into embeddings. Second, we apply game theory models to make preliminary predictions of auction durations. In particular, we tackle the challenge of accurately inferring parameters in game theory models. Third, we develop a Multi-Branch Mixture Density Network to learn the mapping from product embeddings and game-theoretic predictions to the distributions of actual auction durations. Experiments on real-world penny auction data demonstrate that our framework outperforms both game theory-based and machine learning-based prediction approaches.
AB - Game theory and machine learning are two widely used techniques for predicting the outcomes of strategic interactions among humans. However, the game theory-based approach often relies on strong rationality and informational assumptions, while the machine learning-based approach typically requires the testing data to come from the same distribution as the training data. Our work studies how to integrate the two techniques to address these weaknesses. We focus on the interactions among real bidders in penny auctions, and develop a three-stage framework to predict the distributions of auction durations, which indicate the numbers of bids and auctioneer revenues. Specifically, we first leverage a pre-trained neural network to encode the descriptions of products in auctions into embeddings. Second, we apply game theory models to make preliminary predictions of auction durations. In particular, we tackle the challenge of accurately inferring parameters in game theory models. Third, we develop a Multi-Branch Mixture Density Network to learn the mapping from product embeddings and game-theoretic predictions to the distributions of actual auction durations. Experiments on real-world penny auction data demonstrate that our framework outperforms both game theory-based and machine learning-based prediction approaches.
UR - http://www.scopus.com/inward/record.url?scp=85189287338&partnerID=8YFLogxK
U2 - 10.1609/aaai.v38i9.28854
DO - 10.1609/aaai.v38i9.28854
M3 - Conference contribution
AN - SCOPUS:85189287338
T3 - Proceedings of the AAAI Conference on Artificial Intelligence
SP - 9926
EP - 9934
BT - Technical Tracks 14
A2 - Wooldridge, Michael
A2 - Dy, Jennifer
A2 - Natarajan, Sriraam
PB - Association for the Advancement of Artificial Intelligence
T2 - 38th AAAI Conference on Artificial Intelligence, AAAI 2024
Y2 - 20 February 2024 through 27 February 2024
ER -