Abstract
In this paper, we propose a general framework to study the tradeoff between energy efficiency (EE) and spectral efficiency (SE) in massive multiple-input-multiple-output-enabled heterogenous networks while ensuring proportional rate fairness among users and taking into account the backhaul capacity constraint. We aim at jointly optimizing user association, spectrum allocation, power coordination, and the number of activated antennas, which is formulated as a multi-objective optimization problem maximizing EE and SE simultaneously. With the help of weighted Tchebycheff method, it is then transformed into a single-objective optimization problem, which is a mixed-integer non-convex problem and requires unaffordable computational complexity to find the optimum. Hence, a low-complexity effective algorithm is developed based on primal decomposition, where we solve the power coordination and number of antenna optimization problem and the user association and spectrum allocation problem separately. Both theoretical analysis and numerical results demonstrate that our proposed algorithm can fast converge within several iterations and significantly improve both the EE-SE tradeoff performance and rate fairness among users compared with other algorithms.
Original language | English |
---|---|
Article number | 7990198 |
Pages (from-to) | 4720-4733 |
Number of pages | 14 |
Journal | IEEE Transactions on Communications |
Volume | 65 |
Issue number | 11 |
DOIs | |
Publication status | Published - Nov 2017 |
Keywords
- Energy efficiency
- HetNets
- Massive MIMO
- Power coordination
- Proportional fairness
- Spectral efficiency
- Spectrum allocation
- User association