iEnhancer-PsedeKNC: Identification of enhancers and their subgroups based on Pseudo degenerate kmer nucleotide composition

Bin Liu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

Enhancers are regulatory DNA elements that play a crucial role in promoting gene transcription in eukaryotes. According to the distinct levels of biological activities and regulatory effects on target genes, enhancers can be classified into several subgroups, such as strong and weak enhancers. Although some computational predictors have been proposed to identify enhancers and non-enhancers, only a few studies focus on predicting their subgroups. In this work, we employed a two-layer framework to formulate a computational method called iEnhancer-PsedeKNC. The first layer is used to identify if a query DNA sequence is a enhancer or not, if it is predicted as a enhancer, then the second layer is used to further classify it into a strong enhancer or weak enhancer. On a high-quality benchmark dataset, iEnhancer-PsedeKNC achieved an AUC score of 0.85 for enhancer identification, and an AUC score of 0.69 for enhancer subgroup prediction, indicating that iEnhancer-PsedeKNC would be a useful computational tool for enhancer study.

Original languageEnglish
Pages (from-to)46-52
Number of pages7
JournalNeurocomputing
Volume217
DOIs
Publication statusPublished - 12 Dec 2016
Externally publishedYes

Keywords

  • Enhancer identification
  • Strong enhancers
  • Support Vector Machine
  • Weak enhancers

Fingerprint

Dive into the research topics of 'iEnhancer-PsedeKNC: Identification of enhancers and their subgroups based on Pseudo degenerate kmer nucleotide composition'. Together they form a unique fingerprint.

Cite this