Generation of rotational flow for formation of spheroid by using microfluidics device

Masaru Kojima*, Mitsuhiro Horade, Hirochika Takai, Kenichi Ohara, Tamio Tanikawa, Kazuto Kamiyama, Yasushi Mae, Tatsuo Arai

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Spheroid is important in the field of tissue engineering because it has a hole enabling efficient supply of oxygen and growth factors, and a vessel-like geometry is made by piling up it. But it is difficult to say that formation processes of toroidal-like spheroid is efficient, as most of them has done manually. In this study, we wish to suggest utility and possibility of applying microfluidics for formation of toroidal-like spheroid. The concept of our method is that cells are condensed by rotational flow in the microchannel and dielectrophoresis force. Some types of microchannels to generate rotational flow were designed with computer aided design (CAD) and analyzed with fluid analysis software. The superior microchannel was made, and NIH3T3 mouse embryo fibroblast cells suspension was flowed to it. As flow rates were changed, cells were rotated the microchannel just as our concept, and about 30% of them remained. This result support utility of our concept; toroidal-like spheroid can be formed under forces of rotational flow and dielectrophoresis.

Original languageEnglish
Title of host publication2015 IEEE International Conference on Mechatronics and Automation, ICMA 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1042-1047
Number of pages6
ISBN (Electronic)9781479970964
DOIs
Publication statusPublished - 2 Sept 2015
Externally publishedYes
Event12th IEEE International Conference on Mechatronics and Automation, ICMA 2015 - Beijing, China
Duration: 2 Aug 20155 Aug 2015

Publication series

Name2015 IEEE International Conference on Mechatronics and Automation, ICMA 2015

Conference

Conference12th IEEE International Conference on Mechatronics and Automation, ICMA 2015
Country/TerritoryChina
CityBeijing
Period2/08/155/08/15

Keywords

  • MEMS
  • Microfluidics
  • Spheroid

Fingerprint

Dive into the research topics of 'Generation of rotational flow for formation of spheroid by using microfluidics device'. Together they form a unique fingerprint.

Cite this