TY - JOUR
T1 - Evolutionary multiplayer games on graphs with edge diversity
AU - Su, Qi
AU - Zhou, Lei
AU - Wang, Long
N1 - Publisher Copyright:
© 2019 Su et al.
PY - 2019/4
Y1 - 2019/4
N2 - Evolutionary game dynamics in structured populations has been extensively explored in past decades. However, most previous studies assume that payoffs of individuals are fully determined by the strategic behaviors of interacting parties, and social ties between them only serve as the indicator of the existence of interactions. This assumption neglects important information carried by inter-personal social ties such as genetic similarity, geographic proximity, and social closeness, which may crucially affect the outcome of interactions. To model these situations, we present a framework of evolutionary multiplayer games on graphs with edge diversity, where different types of edges describe diverse social ties. Strategic behaviors together with social ties determine the resulting payoffs of interactants. Under weak selection, we provide a general formula to predict the success of one behavior over the other. We apply this formula to various examples which cannot be dealt with using previous models, including the division of labor and relationship- or edge-dependent games. We find that labor division can promote collective cooperation markedly. The evolutionary process based on relationship-dependent games can be approximated by interactions under a transformed and unified game. Our work stresses the importance of social ties and provides effective methods to reduce the calculating complexity in analyzing the evolution of realistic systems.
AB - Evolutionary game dynamics in structured populations has been extensively explored in past decades. However, most previous studies assume that payoffs of individuals are fully determined by the strategic behaviors of interacting parties, and social ties between them only serve as the indicator of the existence of interactions. This assumption neglects important information carried by inter-personal social ties such as genetic similarity, geographic proximity, and social closeness, which may crucially affect the outcome of interactions. To model these situations, we present a framework of evolutionary multiplayer games on graphs with edge diversity, where different types of edges describe diverse social ties. Strategic behaviors together with social ties determine the resulting payoffs of interactants. Under weak selection, we provide a general formula to predict the success of one behavior over the other. We apply this formula to various examples which cannot be dealt with using previous models, including the division of labor and relationship- or edge-dependent games. We find that labor division can promote collective cooperation markedly. The evolutionary process based on relationship-dependent games can be approximated by interactions under a transformed and unified game. Our work stresses the importance of social ties and provides effective methods to reduce the calculating complexity in analyzing the evolution of realistic systems.
UR - http://www.scopus.com/inward/record.url?scp=85064725959&partnerID=8YFLogxK
U2 - 10.1371/journal.pcbi.1006947
DO - 10.1371/journal.pcbi.1006947
M3 - Article
C2 - 30933968
AN - SCOPUS:85064725959
SN - 1553-734X
VL - 15
SP - 1
EP - 22
JO - PLoS Computational Biology
JF - PLoS Computational Biology
IS - 4
M1 - e1006947
ER -