Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries

Fang Liu, Geng Sun, Hao Bin Wu, Gen Chen, Duo Xu, Runwei Mo, Li Shen, Xianyang Li, Shengxiang Ma, Ran Tao, Xinru Li, Xinyi Tan, Bin Xu, Ge Wang*, Bruce S. Dunn*, Philippe Sautet*, Yunfeng Lu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

127 Citations (Scopus)

Abstract

The sluggish electrochemical kinetics of sulfur species has impeded the wide adoption of lithium-sulfur battery, which is one of the most promising candidates for next-generation energy storage system. Here, we present the electronic and geometric structures of all possible sulfur species and construct an electronic energy diagram to unveil their reaction pathways in batteries, as well as the molecular origin of their sluggish kinetics. By decoupling the contradictory requirements of accelerating charging and discharging processes, we select two pseudocapacitive oxides as electron-ion source and drain to enable the efficient transport of electron/Li+ to and from sulfur intermediates respectively. After incorporating dual oxides, the electrochemical kinetics of sulfur cathode is significantly accelerated. This strategy, which couples a fast-electrochemical reaction with a spontaneous chemical reaction to bypass a slow-electrochemical reaction pathway, offers a solution to accelerate an electrochemical reaction, providing new perspectives for the development of high-energy battery systems.

Original languageEnglish
Article number5215
JournalNature Communications
Volume11
Issue number1
DOIs
Publication statusPublished - 1 Dec 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries'. Together they form a unique fingerprint.

Cite this