Demystifying Artificial Intelligence for Data Preparation

Chengliang Chai, Nan Tang, Ju Fan, Yuyu Luo

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

Data preparation - the process of discovering, integrating, transforming, cleaning, and annotating data - is one of the oldest, hardest, yet inevitable data management problems. Unfortunately, data preparation is known to be iterative, requires high human cost, and is error-prone. Recent advances in artificial intelligence (AI) have shown very promising results on many data preparation tasks. At a high level, AI for data preparation (AI4DP) should have the following abilities. First, the AI model should capture real-world knowledge so as to solve various tasks. Second, it is important to easily adapt to new datasets/tasks. Third, data preparation is a complicated pipeline with many operations, which results in a large number of candidates to select the optimum, and thus it is crucial to effectively and efficiently explore the large space of possible pipelines. In this tutorial, we will cover three important topics to address the above issues: demystifying foundation models to inject knowledge for data preparation, tuning and adapting pre-trained language models for data preparation, and orchestrating data preparation pipelines for different downstream applications.

Original languageEnglish
Title of host publicationSIGMOD 2023 - Companion of the 2023 ACM/SIGMOD International Conference on Management of Data
PublisherAssociation for Computing Machinery
Pages13-20
Number of pages8
ISBN (Electronic)9781450395076
DOIs
Publication statusPublished - 4 Jun 2023
Event2023 ACM/SIGMOD International Conference on Management of Data, SIGMOD 2023 - Seattle, United States
Duration: 18 Jun 202323 Jun 2023

Publication series

NameProceedings of the ACM SIGMOD International Conference on Management of Data
ISSN (Print)0730-8078

Conference

Conference2023 ACM/SIGMOD International Conference on Management of Data, SIGMOD 2023
Country/TerritoryUnited States
CitySeattle
Period18/06/2323/06/23

Keywords

  • artificial intelligence
  • data preparation
  • foundation models

Fingerprint

Dive into the research topics of 'Demystifying Artificial Intelligence for Data Preparation'. Together they form a unique fingerprint.

Cite this