Bio-inspired real-time prediction of human locomotion for exoskeletal robot control

Pu Duan, Shilei Li, Zhuoping Duan*, Yawen Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Human motion detection is of fundamental importance for control of human-robot coupled systems such as exoskeletal robots. Inertial measurement units have been widely used for this purpose, although delay is a major challenge for inertial measurement unit-based motion capture systems. In this paper, we use previous and current inertial measurement unit readings to predict human locomotion based on their kinematic properties. Human locomotion is a synergetic process of the musculoskeletal system characterized by smoothness, high nonlinearity, and quasi-periodicity. Takens' reconstruction method can well characterize quasi-periodicity and nonlinear systems. With Takens' reconstruction framework, we developed improving methods, including Gaussian coefficient weighting and offset correction (which is based on the smoothness of human locomotion), Kalman fusion with complementary joint data prediction and united source of historical embedding generation (which is synergy-inspired), and Kalman fusion with the Newton-based method with a velocity and acceleration high-gain observer (also based on smoothness). After thorough analysis of the parameters and the effect of these improving techniques, we propose a novel prediction method that possesses the combined advantages of parameter robustness, high accuracy, trajectory smoothness, zero dead time, and adaptability to irregularities. The proposed methods were tested and validated by experiments, and the real-time applicability in a human locomotion capture system was also validated.

Original languageEnglish
Article number1130
JournalApplied Sciences (Switzerland)
Volume7
Issue number11
DOIs
Publication statusPublished - 1 Nov 2017

Keywords

  • Data fusion
  • Human locomotion
  • Real-time prediction
  • Synergy
  • Takens' reconstruction method

Fingerprint

Dive into the research topics of 'Bio-inspired real-time prediction of human locomotion for exoskeletal robot control'. Together they form a unique fingerprint.

Cite this