Athermally photoreduced graphene oxides for three-dimensional holographic images

Xiangping Li*, Haoran Ren, Xi Chen, Juan Liu, Qin Li, Chengmingyue Li, Gaolei Xue, Jia Jia, Liangcai Cao, Amit Sahu, Bin Hu, Yongtian Wang, Guofan Jin, Min Gu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

236 Citations (Scopus)

Abstract

The emerging graphene-based material, an atomic layer of aromatic carbon atoms with exceptional electronic and optical properties, has offered unprecedented prospects for developing flat two-dimensional displaying systems. Here, we show that reduced graphene oxide enabled write-once holograms for wide-angle and full-colour three-dimensional images. This is achieved through the discovery of subwavelength-scale multilevel optical index modulation of athermally reduced graphene oxides by a single femtosecond pulsed beam. This new feature allows for static three-dimensional holographic images with a wide viewing angle up to 52 degrees. In addition, the spectrally flat optical index modulation in reduced graphene oxides enables wavelength-multiplexed holograms for full-colour images. The large and polarization-insensitive phase modulation over in reduced graphene oxide composites enables to restore vectorial wavefronts of polarization discernible images through the vectorial diffraction of a reconstruction beam. Therefore, our technique can be leveraged to achieve compact and versatile holographic components for controlling light.

Original languageEnglish
Article number6984
JournalNature Communications
Volume6
DOIs
Publication statusPublished - 22 Apr 2015

Fingerprint

Dive into the research topics of 'Athermally photoreduced graphene oxides for three-dimensional holographic images'. Together they form a unique fingerprint.

Cite this