TY - JOUR
T1 - APD三维成像激光雷达研究进展
AU - Cao, Jie
AU - Hao, Qun
AU - Zhang, Fanghua
AU - Xu, Chenyu
AU - Cheng, Yang
AU - Zhang, Jiali
AU - Tao, Yu
AU - Zhou, Dong
AU - Zhang, Kaiyu
N1 - Publisher Copyright:
Copyright ©2020 Infrared and Laser Engineering. All rights reserved.
PY - 2020/9/25
Y1 - 2020/9/25
N2 - Due to the advantages of rich information, strong anti-interference ability and high resolution, three-dimensional (3D) imaging lidar has been widely used in defense and civil fields, such as geomorphology surveys, autopilot, smart transportation and visual tracking. With the development of avalanche photodiode detector (APD) and the multiplicities of 3D lidar (e.g., MEMS, optical phased array, flash, etc.), the performances of lidar has been greatly improved compared with that of initial 3D systems. According to the new requirements on 3D lidar for the military and civilian fields, novel methods and mechanisms were proposed to improve comprehensive performances of 3D imaging. First of all, the three key technologies of APD-based 3D imaging lidar were analyzed, including the transmitting unit, the receiving unit, and the algorithm unit (data processing unit). Then, 3D imaging lidar was classified and discussed according to the different applications for loading. Among them, 3D imaging lidar based on unmanned vehicle was selected as the typical example for illustrating the application status and the difficulties faced with military and civilian applications. Based on the diversified development of 3D imaging methods, two novel 3D imaging methods (heterogeneous resolution and ghost imaging) suitable for APD devices were discussed. Finally, based on the analysis of the research status of 3D imaging lidar, it is concluded that 3D imaging lidar is developing towards the large field of view, high resolution, high precision, real-time, modularity and intelligence, which paves the way for developing high performances of 3D imaging lidar.
AB - Due to the advantages of rich information, strong anti-interference ability and high resolution, three-dimensional (3D) imaging lidar has been widely used in defense and civil fields, such as geomorphology surveys, autopilot, smart transportation and visual tracking. With the development of avalanche photodiode detector (APD) and the multiplicities of 3D lidar (e.g., MEMS, optical phased array, flash, etc.), the performances of lidar has been greatly improved compared with that of initial 3D systems. According to the new requirements on 3D lidar for the military and civilian fields, novel methods and mechanisms were proposed to improve comprehensive performances of 3D imaging. First of all, the three key technologies of APD-based 3D imaging lidar were analyzed, including the transmitting unit, the receiving unit, and the algorithm unit (data processing unit). Then, 3D imaging lidar was classified and discussed according to the different applications for loading. Among them, 3D imaging lidar based on unmanned vehicle was selected as the typical example for illustrating the application status and the difficulties faced with military and civilian applications. Based on the diversified development of 3D imaging methods, two novel 3D imaging methods (heterogeneous resolution and ghost imaging) suitable for APD devices were discussed. Finally, based on the analysis of the research status of 3D imaging lidar, it is concluded that 3D imaging lidar is developing towards the large field of view, high resolution, high precision, real-time, modularity and intelligence, which paves the way for developing high performances of 3D imaging lidar.
KW - APD
KW - Identification
KW - Lidar
KW - Subdivision
KW - Three-dimensional imaging
UR - http://www.scopus.com/inward/record.url?scp=85093662322&partnerID=8YFLogxK
U2 - 10.3788/IRLA20190549
DO - 10.3788/IRLA20190549
M3 - 文章
AN - SCOPUS:85093662322
SN - 1007-2276
VL - 49
JO - Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering
JF - Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering
IS - 9
M1 - 20190549
ER -