TY - JOUR
T1 - 2D platinum telluride as SERS substrate
T2 - Unique layer-dependent Raman enhanced effect
AU - Lei, Zehong
AU - Wu, Dongsi
AU - Cao, Xuanhao
AU - Zhang, Xinkuo
AU - Tao, Lili
AU - Zheng, Zhaoqiang
AU - Feng, Xing
AU - Tao, Li
AU - Zhao, Yu
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2023/3/15
Y1 - 2023/3/15
N2 - Two-dimensional (2D) materials have drawn ever-increasing interest for the application of surface-enhanced Raman scattering (SERS) because of their low-cost synthesis, non-toxic characteristics, flat surface and outstanding optical properties. The unique thickness-dependent SERS of 2D materials is intriguing, however, the underlying mechanism of this phenomenon is not fully understood. In this work, the few-layer platinum telluride (PtTe2), an emerging 2D type-II Dirac semimetal with strong interlayer interaction, is explored as a potential SERS substrate. The Raman enhancement on 2D PtTe2 is confirmed experimentally to be originated from the predominant charge transfer mechanism. The unique thickness-dependent SERS effect reveals that four-layer (4 L) PtTe2 exhibits the strongest Raman intensity of probe molecule Rhodamine 6 G (R6G). Combined with the theoretical investigation by density functional theory (DFT), the ultrasensitive SERS effect of 4 L PtTe2 is found to be attributed to its high density of states (DOS) near the Fermi level and strongest built-in electric field at the interface of molecule/PtTe2. R6G, crystal violet (CV) and rhodamine B (RhB) on 4 L PtTe2 all reach a detection limit as low as 10−10 M. The uniformity, stability and photobleaching effect of PtTe2 as SERS substrate is also studied. Our findings reveal that the charge transfer between molecule and 2D materials is a complex process that is influenced by multiple factors, which might deepen our understanding of the unique chemical mechanism (CM) of SERS in 2D materials.
AB - Two-dimensional (2D) materials have drawn ever-increasing interest for the application of surface-enhanced Raman scattering (SERS) because of their low-cost synthesis, non-toxic characteristics, flat surface and outstanding optical properties. The unique thickness-dependent SERS of 2D materials is intriguing, however, the underlying mechanism of this phenomenon is not fully understood. In this work, the few-layer platinum telluride (PtTe2), an emerging 2D type-II Dirac semimetal with strong interlayer interaction, is explored as a potential SERS substrate. The Raman enhancement on 2D PtTe2 is confirmed experimentally to be originated from the predominant charge transfer mechanism. The unique thickness-dependent SERS effect reveals that four-layer (4 L) PtTe2 exhibits the strongest Raman intensity of probe molecule Rhodamine 6 G (R6G). Combined with the theoretical investigation by density functional theory (DFT), the ultrasensitive SERS effect of 4 L PtTe2 is found to be attributed to its high density of states (DOS) near the Fermi level and strongest built-in electric field at the interface of molecule/PtTe2. R6G, crystal violet (CV) and rhodamine B (RhB) on 4 L PtTe2 all reach a detection limit as low as 10−10 M. The uniformity, stability and photobleaching effect of PtTe2 as SERS substrate is also studied. Our findings reveal that the charge transfer between molecule and 2D materials is a complex process that is influenced by multiple factors, which might deepen our understanding of the unique chemical mechanism (CM) of SERS in 2D materials.
KW - Molecule detection
KW - PtTe
KW - Surface-enhanced Raman scattering
KW - Two-dimensional materials
UR - http://www.scopus.com/inward/record.url?scp=85143715937&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2022.168294
DO - 10.1016/j.jallcom.2022.168294
M3 - Article
AN - SCOPUS:85143715937
SN - 0925-8388
VL - 937
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
M1 - 168294
ER -